Robotics Studio, Spring 2024 Assignment #3 Kyle Abrahm (KWA11) Feb 21, 2024, 3:00PM

Grace Hours: 0 hours used, 0 added, 122 remaining

ANTROID

Isometric

Antroid has 6 legs that lift the robot above the ground. The unique sliding bracket leg design makes the legs move in an ellipse pattern. The Robot is split into three different sections which house the raspberry pi, battery, DC converter, and servo controller. The front and back are organic shapes and the sides are curved.

Isometric

With the cover easily removed through magnetic connection, we can access the raspberry pi. Note that the raspberry pi is placed at an angle. This allows for easier cable management and cooling underneath

Front View

Photorealistic Rendering

Context Rendering

Wiring

Exploded

Walking 1

Walking 2

Elliptical Walking Motion

https://drive.google.com/file/d/1mlwJ0SZse2XOSk8SMcfa 2UfC_Kp9OVIp/view?usp=sharing

Close-up of elliptical leg mechanism

Two linear rods define the path of the slider and create a very strong base

The slider arm will be water cut aluminum

Close-up of elliptical leg mechanism

Head Movement

Choose between tilting the outer sections up and down or left and right

Close-up of Rotating Motor

Close-up of Rotating Motor

Dimension

Dimension

Key Specs

Mass = 5126.60 grams	
Volume = 5082876.24 cubic milli	meters
Surface area = 1140549.87 squa	re millimeters
Center of mass: (millimeters)	
X = -92.33	
Y = 50.70	
Z = 662.76	
Principal axes of inertia and prin	cipal moments of inertia: (grams * square mill
Taken at the center of mass.	
Ix = (0.00, 0.02, 1.00)	Px = 44408839.86
ly = (1.00, 0.02, 0.00)	Py = 117101598.27
Iz = (-0.02, 1.00, -0.02)	Pz = 140942134.28

The weight is not accurate. From my calculations, the mass is near 2,500 grams. Solidworks is saying the mass of the legs are each 650 grams which is not the case.

Step length: 2.75cm Motors: 30 RPM Speed 82.5cm/min

Discussion Board

Rubric

- 1. 5 Points Title slide complete \rightarrow Slide 1 5/5
- 2. 5 Points overall aesthetics, layout and formatting of the slides \rightarrow Slide 1-22 5/5
- 3. 8 Points posting some rendering of your robot on the discussion board at least 24h in advance of deadline, and commenting on at least three other's postings \rightarrow **Slide 21 8/8**
- 4. 10 Points 3D Renderings in perspective \rightarrow Slide 2-5 10/10
- 5. 10 Points Key components included \rightarrow Slide 5 10/10
- 6. 10 Points organic shape (no straight edges) \rightarrow Slide 6 10/10
- 7. 10 Points photorealistic rendering \rightarrow Slide 6 10/10
- 8. 10 Points context rendering \rightarrow Slide 7 10/10
- 9. 10 Points animation \rightarrow Slide 15 5/10
- 10. 10 Points exploded view \rightarrow Slide 21 10/10
- 11. 10 Points key specs listed including speed \rightarrow Slide 21 5/10
- 12. 10 Points multiple poses shown \rightarrow Slide 11-14, 16 10/10
- 13. 10 Points detail close-up shown \rightarrow Slide 14,15,17,18 10/10
- 14. 10 Points side views with main dimensions \rightarrow Slide 19 8/10
- 15. 10 Points if you share your design history with us in Fusion 360 through our scripts. \rightarrow 0/10