
Duke University, Pratt School of Engineering

ME 524 — Multiscale Thermal
Analysis of Composite Material

Kyle Abrahm (kwa11)

Date Performed .Dec 13, 2024
Instructor . Johann Guilleminot

Abstract

This report presents a numerical approach to solving steady-state heat conduction
in a 2D domain, focusing on the implementation of the finite element method (FEM) to
model the heat transfer process. The report explores the theory behind the strong and
weak forms of the governing equations, the process of h-convergence, and the effective
conductivity tensor used in the problem. A numerical integration scheme is introduced
and coded, with a discussion on the isotropic vs non-isotropic nature of the material
properties. The report also examines how changes in the radius of the inner circular
region affect the heat conduction process.

1

1 Introduction

In this project, I aim to compute the effective thermal conductivity of a long-fiber-reinforced
material using the Finite Element Method (FEM). The effective conductivity is defined as
the thermal conductivity that, when associated with a homogeneous material, would lead
to the same thermal behavior as the composite material. This effective conductivity allows
for the substitution of a complex material description with a simpler, homogeneous model
involving a single thermal property. This concept is central to multiscale methods, which
are used to design composite structures without the need for fine-scale descriptions of the
material.

To simplify the analysis, we consider a two-dimensional setting with a unit cell as shown
in Fig. 1. Material 1 corresponds to the matrix phase while material 2 represents the fiber.

Figure 1: Unit Cell of the Composite Material

2 Theoretical Background

Edge Length (L) 0.001 m

Fiber Radius (R) 0.0003 m

k1 1 [W/(mK)]

k2 5 [W/(mK)]

Table 1: Problem Variables

Problem 1 T (x) = x1, ∀x ∈ ∂Ω

Problem 2 T (x) = x2, ∀x ∈ ∂Ω

Table 2: Boundary Conditions

2.1 Strong and Weak Forms of the Heat Conduction Equation

The strong form steady-state heat conduction equation in 2D is given by:

∇ · (k∇T) + s = 0 (1)

2

where T is the temperature, k is the thermal conductivity, and s is the heat source. For
our problem, there is no heat source and thus, s = 0. In the strong form, this equation is
enforced at every point in the domain. However, to apply numerical methods such as the
finite element method, the strong form must be converted into its weak form by multiplying
both sides of the equation by a test function v and integrating over the domain. The weak
form is given by: ∫

ΓN

v · qda+

∫
Ω

v · sdx−
∫
Ω

⟨∇v, k∇T ⟩ dx = 0,∀v ∈ V (2)

This formulation allows the problem to be solved with finite element methods, where
the solution is approximated in a function space.

2.2 h-Convergence

In finite element analysis, h-convergence refers to the process of refining the mesh (that is,
decreasing the element size h) to improve the precision of the solution. Using an incredibly
fine mesh with Hmax = L/200, the model was solved and held as a baseline. Next, more
suitable, larger Hmax values were compared to the fine mesh in the L2 sense. Below is a
graph of the relative errors vs. mesh sizes and the precise values.

Figure 2: L2 Error Visualization

Mesh Sizes L2 Errors
L/2 0.0174
L/25 0.0026
L/50 0.0013
L/100 0.0007
L/150 0.0004
L/175 0.0004

A mesh size of L/50 will be used for the finite element formulation because the L2 error
is sufficiently small at this resolution, indicating that the solution is accurate within an
acceptable tolerance. Additionally, T3 (linear triangular) elements are chosen because they
provide a balance between accuracy and computational efficiency. With three nodes per
element, T3 elements are well-suited for problems where the solution is expected to vary
linearly or smoothly across the domain, ensuring accurate results while maintaining fast
computational run time.

3

Figure 3: L/50 Mesh Size Visualization

3 Effective Conductivity Tensor

The tensor [k] is the effective thermal conductivity tensor of the composite domain. In a
heterogeneous domain composed of multiple materials (e.g., a square matrix with a circular
inclusion), each material region may have its own thermal conductivity properties. For
isotropic materials, thermal conductivity is uniform in all directions, and [k] reduces to a
scalar value k0 often represented in tensor form as k0I where I is the identity matrix. For
anisotropic materials, the thermal conductivity varies with direction, making [k] a full tensor
that can have distinct diagonal entries and potentially off-diagonal terms:

k =

[
kx kxy
kyx ky

]
In this project, the focus is on a simplified scenario where the conductivity tensors are

diagonal:

k =

[
kx 0
0 ky

]
The final effective conductivity tensor [k] for the entire composite domain is computed

by blending the contributions from all elements according to:

[k] =
1

|Ω|

N∑
e=1

∫
Ωe

[ke] [Be(x)] [Te] dx (3)

where |Ω| is the area of the entire domain, and the summation and integral consider all
elements and their respective local fields.

4

3.1 [ke], [Be(x)], [Te] calculation

1. [ke] – Element Conductivity Tensor: Each element e inherits its thermal conduc-
tivity from the material it occupies. If the element lies in the matrix region, [ke] may
be a simple scalar or diagonal tensor with uniform conductivity. If the element is in
the fiber/inclusion region, [ke] may have different values or directions. Thus, [ke] is
determined based on the element’s centroid or nodal coordinates that identify which
material region it belongs to.

2. [Be] – Shape Function Derivatives in Physical Space: The matrix [Be] is formed
from the spatial derivatives of the element’s shape functions. Starting from standard
reference-element shape functions, a coordinate transformation maps these functions
to the actual (physical) element coordinates. The resulting [Be] matrix is 2 × 3 (for
linear triangular elements) or 2 × n (depending on the number of element nodes)
matrix containing the partial derivatives of each shape function with respect to x and
y. Essentially, for a 3-node triangular element:

[Be] =

∂N1

∂x

∂N2

∂x

∂N3

∂x
∂N1

∂y

∂N2

∂y

∂N3

∂y

 .

3. [Te] – Element Temperature Values: After solving the global finite element sys-
tem, nodal temperatures T (xi) at each node i are extracted for each element e to form
the vector:

[Te] =

T (x1)

T (x2)

T (x3)

in the case of a triangular element. This vector provides the necessary local solution
data to evaluate the integrand [ke][Be][Te].

4 Numerical Integration Scheme

To compute the integral ∫
Ωe

[ke][Be(x)][Te] dx,

Gaussian quadrature is often used as a numerical integration technique. Gaussian quadra-
ture approximates the integral by evaluating the integrand at specific quadrature points and
weighting the results. The typical process involves the following steps:

1. Select Quadrature Points and Weights: Choose two quadrature points (ξi, ηi)
and their corresponding weights wi in the reference element (e.g., the unit triangle).
These points and weights are predefined to ensure accurate integration for a given
polynomial degree.

2. Map to Physical Coordinates: Using the nodal coordinates of the element, the
reference Gauss points are mapped into the element’s physical domain. This mapping
accounts for the element’s geometry, which may not match the unit triangle’s shape.

5

3. Evaluate the Integrand: At each quadrature point in the physical domain, compute
the integrand [ke][Be][Te], which includes the local conductivity tensor [ke], the shape
function derivatives [Be], and the temperature field [Te]. For T3 elements, where [Be]
and [ke] are constant within each element, this step is straightforward.

4. Sum and Multiply by Weights: The integral is approximated as:∫
Ωe

[ke][Be][Te] dx ≈
2∑

i=1

wi

(
[ke][Be][Te]

)
xi

|det(J)|

where |det(J)| is the determinant of the Jacobian matrix, which maps the reference
element to the physical element.

However, in this study, the use of Gaussian quadrature and explicit mapping to the
reference domain was not necessary because T3 elements (linear triangular elements) were
employed. For these elements:

• The shape function derivatives [Be] are constant across the element, so the integrand
[ke][Be][Te] is also constant.

• The integral simplifies to the product of the integrand and the element area:∫
Ωe

[ke][Be][Te] dx = [ke][Be][Te] ·Areae.

• The area of each element is computed directly from the nodal coordinates in the
physical domain without requiring a reference-to-physical mapping.

This simplification reduces computational effort while maintaining accuracy, as the con-
stant integrand allows for exact integration over each triangular element. The approach
balances computational efficiency with numerical accuracy, making it well-suited for this
finite element analysis.

5 Discussion: Isotropic vs. Anisotropic Material

A material is isotropic if its thermal conductivity is the same in every direction. In such a
case:

[k] = k0I =

[
k0 0

0 k0

]
.

An anisotropic material, however, has direction-dependent thermal conductivity:

[k] =

[
kx 0

0 ky

]
with kx ̸= ky.

To determine whether this unit cell is isotropic vs. anisotropic, the temperature dis-
tribution field can be plotted and the output kx and ky investigated. The results are as
follows:

6

Figure 4: Problem 1 Temperature Field Figure 5: Problem 2 Temperature Field

[k] =

[
1.4749 0

0 1.4749

]

The presence of a temperature gradient in the graph does not signify whether the unit
cell is isotropic vs. anisotropic. The gradient just indicates that there is a driving force for
heat flow (such as different boundary condition temperatures), not that the material itself
has directionally dependent properties.

Our analysis must be based on the effective conductivity tensor [k] which collects the kxx
and the kyy term. The result, kxx = kyy = 1.4749, proves that the unit cell of material
1 and 2 is isotropic. These k components provide a measure of how readily heat flows
along each principal axis of the domain. Since kxx and kyy are equal, it suggests that the
material does not favor one principal direction over the other, indicating isotropic behavior
in terms of heat conduction. To add on, since material 1 and 2 have conductive heat trans-
fer coefficients of 1 and 5 respectively, a final k of 1.4749 makes sense because 1 < 1.4749 < 5.

Mathematics aside, since the problem is symmetric and the geometry, material distri-
bution, and boundary conditions do not introduce any directional preference, the resulting
effective thermal conductivity in the x and y directions should be the same. This symmetry
means that there is no reason for heat to flow more easily in one direction versus the other
so a this cell being isotropic makes logical sense.

6 Patch Test for Finite Element Verification

The patch test is a standard procedure used to verify the correctness of finite element
implementations. It involves solving a simplified problem with a known analytical solution
and comparing the numerical results to the exact solution. For a properly implemented
FEM solver, the numerical solution should match the exact solution with negligible error.

7

In this project, the patch test was designed to verify the finite element solver for steady-
state heat conduction. The exact solution chosen for the test was:

T (x, y) = T0 + ax+ by,

where T0, a, and b are constants. This solution satisfies the Laplace equation:

∇2T = 0,

with no internal heat source. To implement this test:

• A square domain of size 1 × 1m was defined, representing a uniform material with
thermal conductivity k = 1W/mK.

• Boundary conditions were applied to match the exact solution:

– Bottom edge (y = 0): T = T0 + ax,

– Right edge (x = L): T = T0 + aL+ by,

– Top edge (y = L): T = T0 + ax+ bL,

– Left edge (x = 0): T = T0 + by.

• A linear finite element mesh was generated with triangular elements.

• The numerical solution was compared to the exact solution T (x, y) at all nodes in the
domain.

The maximum absolute error between the numerical and exact solutions was found to
be:

Max Absolute Error = 0.

A negligible error demonstrates that the finite element solver correctly implements the
governing equation, boundary conditions, and interpolation functions. This verification
gives confidence in the solver’s ability to accurately model more complex problems involving
multiple materials, non-uniform geometries, and non-linear solutions. With this result, the
FEM solver is deemed reliable for further analysis.

7 Impact of Changing the Radius

The radius of the circular region affects the heat distribution and conductivity in the do-
main. As the radius of the circular region increases, it alters the relative sizes of the two
materials (square and circle), changing the heat flow dynamics. The graph below shows the
exponential increase between radius and the effective conductivity of components, proving
a positive correlation. To add on, no matter the radius size, kxx = kyy meaning the unit
cell stays isotropic (expected).

8

Figure 6: Evolution of the Effective Conductivity vs. Radius

8 Conclusion

In this project, I successfully implemented a numerical solution to the steady-state heat
conduction problem using the finite element method. I examined the role of the effective
conductivity tensor, implemented a Gaussian quadrature scheme for numerical integration,
and studied the impact of material heterogeneity and mesh refinement on the solution
accuracy. The results show that the material is isotropic. An investigation into how heat
distribution evolves with increases of the circular region radius yielded expected results
of increasing conductivity components. This data provides insights into a more complex
material description and can be used to design structures with composite materials without
resorting to a fine-scale description of the material.

9

9 Appendix

9.1 h-convergence code

clear

close all

clc

%% Generate the geometry

model = createpde('thermal', 'steadystate');

L = 0.001; % Length of the square domain in meters

rect = [3, 4, 0, L, L, 0, 0, 0, L, L]';

radius = 0.0003; % Radius of the circular region in meters

circle = [1, 0.5*L, 0.5*L, radius, 0, 0, 0, 0, 0, 0]';

gd = [rect, circle];

sf = 'R1+C1';

ns = char('R1', 'C1')';

g = decsg(gd, sf, ns);

geometryFromEdges(model, g);

%% Assign Thermal Properties

thermalProperties(model, 'ThermalConductivity', 1, 'Face', 1); % Square region

thermalProperties(model, 'ThermalConductivity', 5, 'Face', 2); % Circular region

%% Apply Boundary Conditions

thermalBC(model, 'Edge', 1:4, 'Temperature', @(location, state) location.x);

%% h-convergence and L2 norm

% Define a range of mesh sizes for convergence study

mesh_sizes = [L/2, L/25, L/50, L/100, L/150, L/175];

% Preallocate arrays to store results

L2_errors = zeros(size(mesh_sizes));

mesh_element_counts = zeros(size(mesh_sizes));

% Create Fine mesh for comparison

hmax_fine = L/200; % Fine mesh size

generateMesh(model, 'Hmax', hmax_fine);

results_fine = solve(model);

temperature_fine = results_fine.Temperature;

fine_coords = model.Mesh.Nodes;

% H-Convergence Loop

for i = 1:length(mesh_sizes)

% Solve for Test Mesh

hmax_test = mesh_sizes(i);

generateMesh(model, 'Hmax', hmax_test);

results_test = solve(model);

10

temperature_test = results_test.Temperature;

test_coords = model.Mesh.Nodes;

% Interpolation of test mesh solution to fine mesh

temperature_test_interp = zeros(size(temperature_fine));

% Nearest neighbor interpolation

for j = 1:length(temperature_fine)

% Find the closest point in the test mesh

[~, closest_idx] = min(sum((test_coords - fine_coords(:,j)).^2, 1));

% Interpolate temperature from the closest point

temperature_test_interp(j) = temperature_test(closest_idx);

end

% Compute the L2 norm of the error between the fine and interpolated test solutions

error = temperature_fine - temperature_test_interp;

L2_errors(i) = norm(error, 2); % L2 norm calculation

% Store mesh element count

mesh_element_counts(i) = size(model.Mesh.Elements, 2);

end

% Visualization of Convergence

figure;

subplot(2,1,1);

loglog(mesh_sizes, L2_errors, '-o', 'LineWidth', 2);

title('L2 Error Convergence');

xlabel('Mesh Size (h)');

ylabel('L2 Error');

grid on;

axis tight; % First fit the axis to the data

axis padded; % Then add some padding

subplot(2,1,2);

loglog(mesh_element_counts, L2_errors, '-o', 'LineWidth', 2);

title('L2 Error vs Number of Mesh Elements');

xlabel('Number of Mesh Elements');

ylabel('L2 Error');

grid on;

axis tight; % First fit the axis to the data

axis padded; % Then add some padding

% Display Errors

disp('Mesh Sizes:');

disp(mesh_sizes);

disp('L2 Errors:');

disp(L2_errors);

11

9.2 Effective Conductivity Code

clear; close all; clc;

%% Geometry and Material Parameters

L = 0.001; % [m]

radius = 0.0003; % [m]

domainArea = L^2;

%% Create PDE Models

model_x = createpde('thermal', 'steadystate');

model_y = createpde('thermal', 'steadystate');

% Define geometry: square + circle

rect = [3,4, 0, L, L, 0, 0,0, L,L]';

circle = [1, 0.5*L, 0.5*L, radius, 0,0,0,0,0,0]';

gd = [rect, circle];

ns = char('R1','C1')';

sf = 'R1+C1';

g = decsg(gd,sf,ns);

geometryFromEdges(model_x,g);

geometryFromEdges(model_y,g);

% Assign thermal properties

thermalProperties(model_x, 'ThermalConductivity', 1, 'Face',1);

thermalProperties(model_x, 'ThermalConductivity', 5, 'Face',2);

thermalProperties(model_y, 'ThermalConductivity', 1, 'Face',1);

thermalProperties(model_y, 'ThermalConductivity', 5, 'Face',2);

%% Boundary Conditions

% T = x on outer boundary for model_x

thermalBC(model_x,'Edge',1:4,'Temperature',@(loc,~)loc.x);

% T = y on outer boundary for model_y

thermalBC(model_y,'Edge',1:4,'Temperature',@(loc,~)loc.y);

%% Mesh

Hmax_value = L/50;

generateMesh(model_x, 'Hmax', Hmax_value, 'GeometricOrder', 'linear'); % Creates T3

generateMesh(model_y, 'Hmax', Hmax_value, 'GeometricOrder', 'linear'); % T6 by default

%% Plot the Mesh for Visual Reference

figure;

pdeplot(model_y, 'Mesh', 'on'); % Plots the mesh for model_y

axis equal tight;

xlabel('X [m]'); ylabel('Y [m]');

12

title('Mesh of Model');

%% Solve the Problems

results_x = solve(model_x);

results_y = solve(model_y);

T_x = results_x.Temperature; % Temperature field for T=x condition

T_y = results_y.Temperature; % Temperature field for T=y condition

nodes = model_x.Mesh.Nodes; % 2xN

elements = model_x.Mesh.Elements; % 3xNe

numElements = size(elements,2);

%% Compute Effective Conductivity

% Initialize integral sum

integral_sum = zeros(2,2);

for e = 1:numElements

% Get node indices and coordinates for element e

elemNodes = elements(:,e);

Xe = nodes(1,elemNodes);

Ye = nodes(2,elemNodes);

% Extract element temperatures from both solutions

Te = [T_x(elemNodes), T_y(elemNodes)]; % 3x2 matrix

% Compute area of the element

x1 = Xe(1); y1 = Ye(1);

x2 = Xe(2); y2 = Ye(2);

x3 = Xe(3); y3 = Ye(3);

detJ = (x2 - x1)*(y3 - y1) - (x3 - x1)*(y2 - y1);

area_e = abs(detJ)/2;

% Compute shape function derivatives (B_e)

% For a linear triangle (N1, N2, N3):

% dN/dx = [(y2 - y3), (y3 - y1), (y1 - y2)]/(2*A)

% dN/dy = [(x3 - x2), (x1 - x3), (x2 - x1)]/(2*A)

b1 = (y2 - y3)/(2*area_e); b2 = (y3 - y1)/(2*area_e); b3 = (y1 - y2)/(2*area_e);

c1 = (x3 - x2)/(2*area_e); c2 = (x1 - x3)/(2*area_e); c3 = (x2 - x1)/(2*area_e);

B_e = [b1 b2 b3; c1 c2 c3]; % 2x3 matrix

% Determine local conductivity k_e based on element centroid

centroidX = mean(Xe);

centroidY = mean(Ye);

if ((centroidX - 0.5*L)^2 + (centroidY - 0.5*L)^2 <= radius^2)

k_e = [5 0; 0 5]; % Fiber

13

else

k_e = [1 0; 0 1]; % Matrix

end

% Compute integrand [k_e][B_e][T_e]

% Dimensions: (2x2)*(2x3)*(3x2) = (2x2)

integrand = k_e * B_e * Te;

% Integrate over the element: integrand is constant, so integral = integrand * area_e

integral_sum = integral_sum + integrand * area_e;

end

% Divide by total area to get effective conductivity

k_eff = (1/domainArea)*integral_sum;

disp('Effective Conductivity Tensor [k]:');

disp(k_eff);

% Check isotropy

if abs(k_eff(1,2))<1e-12 && abs(k_eff(2,1))<1e-12

disp('Off-diagonal terms are negligible.');

end

disp(['k_xx = ', num2str(k_eff(1,1)), ', k_yy = ', num2str(k_eff(2,2))]);

%% Visualization of the Temperature Distributions

% Plot the temperature field for T=x BC case

figure;

pdeplot(model_x,'XYData',results_x.Temperature,'Title','Temperature Distribution (T=x BC)','Mesh','off');

colorbar; axis equal tight;

xlabel('X [m]'); ylabel('Y [m]');

% Plot the temperature field for T=y BC case

figure;

pdeplot(model_y,'XYData',results_y.Temperature,'Title','Temperature Distribution (T=y BC)','Mesh','off');

colorbar; axis equal tight;

xlabel('X [m]'); ylabel('Y [m]');

%% Interpreting Isotropy

disp('Effective Conductivity Tensor [k]:');

disp(k_eff);

% Grab values

k_xx = k_eff(1,1);

k_yy = k_eff(2,2);

k_xy = k_eff(1,2);

k_yx = k_eff(2,1);

14

disp('Check isotropy:');

disp(['k_xx = ', num2str(k_xx), ', k_yy = ', num2str(k_yy)]);

disp(['k_xy = ', num2str(k_xy), ', k_yx = ', num2str(k_yx)]);

if abs(k_xy) < 1e-12 && abs(k_yx) < 1e-12 && abs(k_xx - k_yy) < 1e-12

disp('The material appears isotropic.');

else

disp('The material appears anisotropic.');

end

9.3 k Evolution Plotting

% Initialize data arrays

radius = [0.001, 0.002, 0.003, 0.0035 ,0.004, 0.0045, 0.00475];

k_eff_xx = [1.0428, 1.1844, 1.4749, 1.7138, 2.0614, 2.6029, 3.0109];

k_eff_yy = [1.0428, 1.1844, 1.4749, 1.7138, 2.0614, 2.6029, 3.0109];

% Create the plot

figure;

hold on;

plot(radius, k_eff_xx, '-o', 'DisplayName', 'k_{eff,xx}'); % Plot for k_xx

plot(radius, k_eff_yy, '-s', 'DisplayName', 'k_{eff,yy}'); % Plot for k_yy

% Customize the plot

xlabel('Radius [m]');

ylabel('Effective Conductivity Components');

title('Evolution of Effective Conductivity Components vs. Radius');

legend('Location', 'best');

grid on;

hold off;

15

9.4 Patch Test Code

clear; close all; clc;

%% Domain Definition

L = 1.0;

rect = [3,4,0,L,L,0,0,0,L,L]';

gd = rect;

ns = char('R1')';

sf = 'R1';

% Thermal Conductivity

k = 1;

% Exact solution: T_exact = T0 + a*x + b*y

T0 = 100;

a = 10;

b = -5;

model_patch = createpde('thermal','steadystate');

g_patch = decsg(gd,sf,ns);

geometryFromEdges(model_patch,g_patch);

figure;

pdegplot(model_patch,'EdgeLabels','on'); axis equal;

title('Edge Labels');

% Set thermal properties (uniform conductivity)

thermalProperties(model_patch,'ThermalConductivity',k);

% Boundary conditions

% 1 = Left, 2 = Bottom, 3 = Right, 4 = Top

thermalBC(model_patch,'Edge',1,'Temperature',@(loc,~)T0 + a*loc.x); % bottom

thermalBC(model_patch,'Edge',2,'Temperature',@(loc,~)T0 + a*L + b*loc.y); % right

thermalBC(model_patch,'Edge',3,'Temperature',@(loc,~)T0 + a*loc.x + b*L); % top

thermalBC(model_patch,'Edge',4,'Temperature',@(loc,~)T0 + b*loc.y); % left

% Generate a linear mesh

generateMesh(model_patch,'GeometricOrder','linear','Hmax',L/50);

% Solve the patch test problem

results_patch = solve(model_patch);

% Extract node coordinates and computed temperature

X = model_patch.Mesh.Nodes(1,:)';

Y = model_patch.Mesh.Nodes(2,:)';

16

T_num_patch = results_patch.Temperature;

% Compute exact solution at node coordinates

T_ex_patch = T0 + a*X + b*Y;

% Compute error

error_patch = T_num_patch - T_ex_patch;

max_error_patch = max(abs(error_patch));

disp('PATCH TEST RESULTS');

disp(['Max absolute error in patch test: ', num2str(max_error_patch)]);

% Plot the numerical solution

figure;

pdeplot(model_patch,'XYData',results_patch.Temperature,'Title','Patch Test Temperature', 'mesh', 'on');

colorbar; axis equal tight;

xlabel('x'); ylabel('y');

17

	Introduction
	Theoretical Background
	Strong and Weak Forms of the Heat Conduction Equation
	h-Convergence

	Effective Conductivity Tensor
	[ke] , [Be(x)] , [Te] calculation

	Numerical Integration Scheme
	Discussion: Isotropic vs. Anisotropic Material
	Patch Test for Finite Element Verification
	Impact of Changing the Radius
	Conclusion
	Appendix
	h-convergence code
	Effective Conductivity Code
	k Evolution Plotting
	Patch Test Code

